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Abstract: Design of an effective and efficient fractional order PID (FOPID) controller, as a generalization of a 

standard PID controller based on fractional order calculus, for an industrial control system to obtain high-quality 

performances is of great theoretical and practical significance. From the perspective of multi-objective 

optimization, this paper presents a novel FOPID controller design method based on an improved multi-objective 

extremal optimization (MOEO) algorithm for an automatic regulator voltage (AVR) system. The problem of 

designing FOPID controller for AVR is firstly formulated as a multi-objective optimization problem with three 

objective functions including minimization of integral of absolute error (IAE), absolute steady-state error, and 

settling time. Then, an improved MOEO algorithm is proposed to solve this problem by adopting individual-based 

iterated optimization mechanism and polynomial mutation (PLM). From the perspective of algorithm design, the 

proposed MOEO algorithm is relatively simpler than NSGA-II and single-objective evolutionary algorithms, such 

as genetic algorithm (GA), particle swarm optimization (PSO), chaotic anti swarm (CAS) due to its fewer 

adjustable parameters. Furthermore, the superiority of proposed MOEO-FOPID controller to NSGA-II-based 

FOPID, single-objective evolutionary algorithms-based FOPID controllers, MOEO-based and NSGA-II-based PID 

controllers is demonstrated by extensive experimental results on an AVR system in terms of accuracy and 

robustness.  

Keywords: Extremal optimization; Multi-objective optimization; Fractional order PID controller; Automatic 

regulator voltage system 

1. Introduction

In the past decades, a great many advancements have been gained in control theories and practices 

[1]-[4], proportional-integral-derivative (PID) control is still widely recognized as one of the simplest 

yet most effective control strategies in the control industry [5]-[10]. As a generalization of a standard 

PID controller based on fractional order calculus, fractional order PID (FOPID) controller namely 

PI
λ
D
µ controller was firstly proposed by Podlubny [11], and it has been demonstrated to provide better 

control performance than standard integer order PID controller due to extra degrees of freedom 

introduced by an integrator of fractional order λ and a differentiator of fractional order µ. As a 

consequence, FOPID controller has attracted increasing attentions by the academic and industrial 

community [12]-[17]. On the other hands, the introduction of extra parameters in a FOPID controller 

also increases the difficulty of tuning satisfied values of parameters, so how to design and tune an 

optimal FOPID controller to obtain high-quality performances, such as high stability, satisfied transient 

response, excellent steady performance, and good robustness, is of great theoretical and practical 

significance, but is still far from well-understood. In the attempt to address this issue, some researchers 

have made a great deal of efforts from the following different respective of analytical methods [18]-[22] 

and evolutionary algorithms-based methods [14], [23]-[28]. More specifically, the evolutionary 

algorithms, such as genetic algorithm (GA) [14], chaotic ant swarm (CAS) [14], particle swarm 

optimization (PSO) [23], [24], differential evolution (DE) [25], artificial been colony algorithm [26], 

hybrid algorithm combing with electromagnetism-like algorithm and GA [27], have been utilized for 



the design of FOPID controllers. Nevertheless, most of the reported research works focus on 

single-objective optimization for the design of FOPID controllers. In practice, multi-objective 

optimization algorithms [28]-[31] are required to design FOPID and PID controllers because of 

contradictory objective functions and performance metrics, e.g., integral of the time multiplied squared 

error (ITSE) and the integral of the squared deviation of controller output (ISDCO) [30]. However, the 

reported studies concerning design of FOPID controller based on multi-objective evolutionary 

algorithms (MOEAs) is considered as just a beginning because only NSGA-II [32] has been extended 

to design FOPID controllers so far. This paper presents an alternative effective MOEA method based 

on multi-objective extremal optimization called MOEO for the design of FOPID controller in an 

automatic regulator voltage (AVR) [33] system, which is used to maintain the terminal voltage of a 

synchronous generator at a desired level. 

As a novel evolutionary algorithm originally inspired by far-from-equilibrium dynamics of 

self-organized criticality (SOC) [34],[35], extremal optimization (EO) [36]-[38] provides a novel 

insight into optimization domain because it merely selects against the bad instead of favoring the good 

randomly or according to a power-law probability distribution [39]. The mechanism of EO can be 

characterized from the perspectives of statistical physics, biological co-evolution and ecosystem [40]. 

So far, the EO algorithm and its modified versions have been successfully applied to a variety of 

benchmark and real-world engineering optimization problems, such as graph partitioning [41], graph 

coloring [42], travelling salesman problem [43], [44], maximum satisfiability (MAX-SAT) problem 

[45], [46], numerical optimization problems and multi-objective optimization problems [47], 

community detection in complex network [48], steel production scheduling [49], design of heat pipe 

[50], and unit commitment problem for power systems [51]. The more comprehensive introduction 

concerning EO is referred to the surveys [52], [53]. Unfortunately, there are only few reported research 

works concerning the applications of EO in the field of multi-objective optimization [54]-[56]. Chen 

and Lu [55] propose an individual elitist (1+λ) multi-objective algorithm called multi-objective 

extremal optimization (MOEO) based on a single solution, in which a new hybrid mutation operator 

combining Gaussian mutation with Cauchy mutation to enhances the exploratory capabilities. In [56], 

another Pareto-based algorithm named Multi-objective Population-based Extremal Optimization 

(MOPEO), which adopts population-based iterated mechanism and non-uniform mutation. Although 

these works only focus on some benchmark multi-objective optimization functions, e.g., ZDT1, ZDT2, 

ZDT3, ZDT4, and ZDT6, the experimental results on these benchmark problems have shown that 

MOPEO [55] and MOEO [56] provide better performance than the popular NSGA-II [32] and some 

other reported MOEAs. This is one of the primary motivations to extend MOEO algorithms to design 

FOPID controllers for an AVR system. 

To the best of our knowledge, this paper is the first reported research work concerning 

multi-objective EO for the optimal design FOPID and PID controllers. The key idea behind the 

proposed method is formulating the FOPID design problem for AVR system as a multi-objective 

optimization problem with three objective functions including integral of absolute error (IAE), absolute 

steady-state error, and settling time, and solving this problem by developing an improved MOEO 

algorithm, which consists of the following main components, such as generation of a random 

real-coded individual representing a FOPID controller, updating the current individual based on 

polynomial mutation [60], Pareto-based fitness assignment strategy based on non-dominated sorting, 

updating the external archive according to the archive controller and the crowding-distance metric. In 

comparison to NSGA-II-based FOPID design algorithm [30], the proposed MOEO algorithm adopts 



individual-based iterated optimization mechanism with only mutation operation called polynomial 

mutation. From the perspective of algorithm design, the proposed MOEO algorithm is relatively 

simpler than NSGA-II [30] and reported competitive single-objective evolutionary algorithms, such as 

GA [14], PSO [14],[24], CAS [14] due to its fewer adjustable parameters and single individual-based 

iterated optimization mechanism with only mutation operation. Furthermore, extensive experimental 

results on AVR system have shown that the proposed MOEO-FOPID controller is superior to 

NSGA-II-FOPID, single-objective evolutionary algorithms-based FOPID controllers, MOEO-based 

and NSGA-II-based PID controllers in terms of accuracy and robustness. 

The rest of this paper is organized as follows. Section 2 presents preliminaries concerning fractional 

order PID controller, AVR system, multi-objective optimization problems and EO. The MOEO-based 

FOPID design algorithm is proposed in section 3. The experimental results on AVR system are given 

and discussed in section 4. Finally, we give the conclusion and open problems in section 5. 

2. Preliminaries

2.1. Fractional order PID controller 

As one the most commonly used definitions for fractional differ-integral, Riemann-Liouville (RL) 

definition are given as the following form [57]: 
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where Γ(.) is the Gamma function. The Laplace transform of RL fractional derivative (1) is expressed 

as follows: 
1

1
0 0 00

0

( ) ( ) ( )
n

st r r k r k

t t t
k

e D f t dt s F s s D f t dt
−

∞ − − −
=

=

= − ∑∫ (2) 

Fig.1. Block diagram of a control system with a FOPID controller 

Fig.1 shows block diagram of a control system with a FOPID controller, which is also called PI
λ
D
µ 

controller. Its definition in terms of transfer function is given as follows:  

Definition 1 [11]: The transfer function Gc(s) of a FOPID controller is defined in the equation (3): 

( )
( )

( )c P I D

U s
G s K K s K s

E s

λ µ−= = + + (3) 

where KP, KI, and KD are proportional, integral, derivative gain, respectively, and λ, µ are the fractional 

order parameter of integrator and differentiator, respectively, and λ>0, µ>0. Note that the standard 

integer order PID controller is one of the special FOPID controller with λ=1 and µ=1. 

From the perspective of time domains, the PI
λ
D
µ controller is also expressed as the following form: 

( ) ( ) ( ) ( )p i du t K e t K D e t K D e tλ µ−= + +  (4) 

2.2. AVR system 

An AVR system [33] consists of four main components including amplifier, exciter, generator, and 

sensor, and more details concerning the transfer functions with the range of parameters modeling these 



components are shown in Table 1. Here, KA, KE, KG, and KR are the gains of amplifier, exciter, generator, 

and sensors, respectively, and τA, τE, τG, and τR are inertia time constants of amplifier, exciter, generator, 

and sensors, respectively. The block diagram of an AVR system with a FOPID controller is given in 

Fig.2, where Vref(s) and Vt(s) are the reference voltage and terminal voltage, respectively.  

Table 1: Models of the components in an AVR system 

Component Transfer function Parameters range 

Amplifier KA/(1+τAs) 10<KA<400, 0.02<τA<0.1s 

Exciter KE/(1+τEs) 1<KE<400, 0.5<τE<1s 

Generator KG/(1+τGs) 0.7<KG<1, 1<τG<2s 

Sensor KR/(1+τRs) 0.001<τR<0.06s 
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Fig.2. Block diagram of an AVR system with a FOPID controller 

2. 3. Multi-objective optimization problems 

This subsection presents some basic definitions concerning multi-objective problems [58] used in 

the following sections.

Definition 2: A multi-objective unconstrained minimization problem with n decision variables and m 

objectives is generally defined as follows:  

1 2Minimize ( ) ( ( ), ( ),..., ( ))
m

f f f f=x x x x                       (5) 

where x=(x1, x2,…, xn)
n∈� is the vector of n decision variables, each decision variable xi is bounded 

with lower and upper limits li≤xi≤ui, i=1, 2, …, n. 

Definition 3: A vector u=(u1, u2, …, um) m∈� is defined to dominate another vector v=(v1, v2, …, 

vm) m∈� (denoted as u v≺ ) if and only if all the following two conditions should be satisfied 
simultaneously: (1) {1,2,..., },

i i
i m u v∀ ∈ ≤ , and (2) {1,2,..., },

i i
i m u v∃ ∈ < . 

Definition 4: A solution n∈x � is defined to be non-dominated (or Pareto optimal) with respect to 

n
� if and only if there does not exist another solution n∈y � such that ( ) ( )f fy x≺ . The 

Pareto-optimal set consists of all Pareto optimal solutions in the entire search space and the 

Pareto-optimal front is defined as the set of all objective functions values corresponding to the Pareto 

optimal solutions.  

2.4. Extremal optimization  

In general, the τ-EO algorithm, as the original EO version proposed by Boettcher and Percus in 

the seminal papers [36],[37] and its modified versions consist of the following basic operations, 

such as initialization of a random solution and the best global fitness so far, evaluation of global 

fitness and local fitness, selection of some bad local variables randomly or based on power-law 

probability distribution, generation a new solution by mutation for the selected bad variables, 

updating the best global fitness so far, and updating the solution by accepting the new solution 



unconditionally. Clearly, EO algorithms eliminate the bad more than encourage the good [39] 

because of the above mentioned basic operations including selection of bad local variables, 

generation a new solution by mutation for the selected bad variables.

3. The proposed algorithm

This section presents the proposed MOEO-based FOPID controller design algorithm. More 

specifically, definition of multi-objective functions, description of the main algorithm, and analysis of 

the proposed algorithm are given in the following subsection, respectively.    

3.1 Multi-objective functions definition

In order to evaluate the control performance of PID controllers, most of previous research works 

[1], [6] have used various quantitative indices, such as integral of absolute error (IAE), integral squared 

error (ISE), integral of time weighted absolute error (ITAE), integral of time multiply squared error 

(ITSE), etc. In practice, it is difficult to guarantee satisfied performance for a complex system by using 

a single index [59]. Although some efforts have been devoted to provide more effective optimization 

methods with weighted fitness by considering several indices [9], [10], it is also not easy to determine 

appropriate values of various weight parameters for inexperienced designers and engineers. As 

analyzed in the research work [30], [31], the design of PID and FOPID controllers requires 

multi-objective optimization because of contradictory objective functions and performance metrics, e.g., 

ITSE and integral of the squared deviation of controller output (ISDCO). Here, in order to considering 

the trade-off between transient response and steady-state performance, the design problem with respect 

to a FOPID controller is formulated as the following multi-objective optimization problem with three 

objective functions including minimization of IAE, absolute steady-state error, and settling time. 

Definition 5: Design of a FOPID controller denoted as x=(x1, x2, x3, x4, x5)=(KP , KI, KD, λ, µ) is defined 

as an unconstrained multi-objective optimization problem with three contradictory objective functions: 

1 2 3Minimize ( ) ( ( ), ( ), ( ))f f f f=x x x x (6) 

1 0
( ) ( )if e t dt

∞
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2 ( ) 1000
ss
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s
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where ei(t) is i-th system error at the time t, f1 is IAE, f2 is absolute steady-state error Ess, weight 

coefficient 1000 is used to guarantee the scale of coordinate f2 consistent with other coordinates f1 and 

f3 for better visualization of Pareto front, and f3 is settling time ts corresponding to the system output 

with some level of steady-state error required by designers or engineers. Additionally, L= (l1, l2, l3, l4, 

l5 ) and U= (u1, u2, u3, u4, u5 ), where li≤xi≤ui, i=1, 2, …, 5. 

   It is should be noted that the selection of multi-objective functions is not only limited to the 

proposed definition in this work. There are several possible choices based on combination of these 

above mentioned performance indices for a specified control system, which will be another significant 

subject of future investigation. 

3.2 The main algorithm 

In this subsection, we propose MOEO-based FOPID controller design algorithm to solve the 

multi-objective optimization problem as described by definition 5. This algorithm consists of the 

following main components, such as generation of a random real-coded individual representing a 



FOPID controller, updating the current individual based on polynomial mutation (PLM) [60], 

Pareto-based fitness assignment strategy based on non-dominated sorting, updating the external archive 

according to the archive controller and the crowding-distance metric. The flowchart of the proposed 

algorithm is shown in Fig.3, and more detailed description is given as follows: 

Start

Generate a real-coded solution S=(x1, x2, x3, x4, x5) representing an FOPID controller 

(KP , KI, KD, , ) randomly, and set the external archive empty and SC=S

Generate 5 candidate configurations {Si, i=1, 2, 3, 4, 5} of the current solution 

SC by mutating each variable xi (i=1, 2, 3, 4, 5) one by one based on polynomial 

mutation (PLM) while keeping other variables unchanged

Select a non-dominated solution randomly and set the selected solution as  SN

Update the external elitist archive by  function Update_Archive (SN, Achieve)

Accept SC=SN unconditionally

Stopping criteria?

Return the external archive as the best non-dominated solutions found so far and 

output the corresponding best Pareto front and control performance found so far

Rank 5 configurations {Si, i=1, 2, 3, 4, 5} by using Pareto-based fitness 

assignment strategy based on non-dominated sorting, where three 

objective functions f1, f2, and f3 are adopted according to definition 5

AVR system with an FOPID controller and adjustable parameters 

including the maximum number of iterations Imax, the maximum 

size of external archive Amax, and shape parameter q used in PLM

End

Number of non-dominated 

solutions>1?

Set this solution as a 

mutated solution SN

Yes

No

Yes

No

Fig.3 The flowchart of MOEO-based FOPID controller design algorithm 

MOEO- FOPID controller design algorithm 

Input: AVR system with a FOPID controller and adjustable parameters including the maximum 

number of iterations Imax, the maximum size of external archive Amax, and shape parameter q used in 



PLM. 

Output: The best non-dominated solutions for FOPID controller and the corresponding best Pareto 

front found so far. 

Step 1: Generate a real-coded solution S=(x1, x2, x3, x4, x5) representing a FOPID controller (KP , KI, KD, 

λ, µ) randomly, and set the external archive empty and SC=S.

Step 2: Generate 5 candidate configurations {Si, i=1, 2, 3, 4, 5} of the current solution SC by mutating 

each variable xi (i=1, 2, 3, 4, 5) one by one based on PLM operator [60] while keeping other variables 

unchanged. 

max( ) ( ) ( ), 1, 2,...,5i i i i iS x S x x iα β= + ⋅ = (11) 

(1/ ( 1))

(1/ ( 1))

(2 ) 1,   if 0.5
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r r
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+
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max ( ) max[ ( ) , ( )],  1, 2,...,5i i i i i i ix S x l u S x iβ = − − =                    (13) 

where xi is the decision variable, q is a positive real number, r is a uniformly distributed random 

number between 0 and 1, and βmax(xi) is the predefined maximum value of perturbation allowed 

between original and mutated solution.

Step 3: Rank 5 configurations {Si, i=1, 2, 3, 4, 5} by using Pareto-based fitness assignment strategy 

based on non-dominated sorting, where three objective functions f1, f2, and f3 are adopted according to 

definition 5.  

Step 4: If there is only non-dominated configuration Snd, then select Snd as the new solution SN; 

otherwise, select a non-dominated configuration randomly, and set this selected one as the new solution 

SN. 

Step 5: Update the external elitist archive by function Update_Archive (SN, Achieve) shown in Fig.5. 

Step 6: Accept SC=SN unconditionally.  

Step 7: Repeat step 2-6 until the predefined stopping criterion, e.g., maximum number of iterations Imax 

is met. 

Step 8: Return the external archive as the best non-dominated solutions found so far and output the 

corresponding best Pareto front found so far. 

3.3. Pareto-based fitness assignment strategy 

In the proposed MOEO-FOPID algorithm, a Pareto-based fitness assignment strategy is introduced 

based on non-dominated sorting similar to [55], [56]. More specially, the fitness of S is assigned zero 

when one solution S is non-dominated by all the other solutions. In other words, the non-dominated 

solutions are ranked as zero while the rank of the worst solutions is the number of all solutions minus 

one.  

To be clearer, the process of Pareto-based fitness assignment strategy based on non-dominated 

sorting in step 2 for a two-objective minimization problem is illustrated as Fig.4. More specially, 

assuming that the current solution Si=(x1, x2, x3, x4, x5) marked with black solid circle with 5 decision 

variables will change to other 5 solutions SiA=(xm1, x2, x3, x4, x5), SiB= (x1, xm2, x3, x4, x5), SiC=(x1, x2, xm3, 

x4, x5), SiD=(x1, x2, x3, xm4, x5), SiE=(x1, x2, x3, x4, xm5) via PLM, where xm1, xm2, xm3, xm4, and xm5 are the 

mutated variable from x1, x2, x3, x4, and x5 by PLM, respectively. The solution SiA marked red solid 

circle dominates any of the other four solutions, so the rank number of SiA is 0. Similarly, the rank 

number of SiB, SiC, SiD marked with green solid circles is 1 because each of SiB, SiC, SiD is 

non-dominated by SiA while is dominated by the other two solutions from {SiB, SiC, SiD}. Additionally, 



the worst case is that the solution SiE marked with blue solid circle is dominated by any of the other 

four solutions SiA, SiB, SiC, and SiD, so the fitness of SiE equals to 4.  

Fig.4. Illustrated process of Pareto-based fitness assignment strategy based on non-dominated sorting 

 3.4. Update of the external elitist archive 

In order to keep a historical record of non-dominated solutions found along the search process of 

the proposed MOEO-FOPID, the external archive is designed by borrowing the elitist mechanism of 

MOEO [55] and MOPEO [56]. More specially, the archive consists of two main components: (1) 

archiving logic [58] designed to decide whether the non-dominated solutions found in the new 

population should be added to the achieve or not, and (2) crowding-distance metric [32] adopted to 

judge whether the solutions in the new population reside in the most region of the archive. The detailed 

description of the external archive is given in Fig.5. 

Function Update_Archive(Smi, Archive) 

1:  Begin function 

2:  If  the solution Smi is dominated by at least one member of the archive, then 

3:    The archive keeps unchanged 

4:  Else if some members of archive are dominated by Smi, then 

5:   Remove all the dominated members from the archive and add Smi to the archive 

6: End if  

7: Else 

8:  If the number of archive is smaller than Amax, i.e., the predefined maximum number of the archive, then 

9.   Add Smi to the archive 

10:  Else 

11:  If  Smi resides in the most crowded region of the archive, then 

12:  The archive keeps unchanged 

13: Else 

14:  Replace the member in the most crowded region of the archive by Smi 

15: End if 

16: End if 

17: End if 

18: End function 

Fig.5. The pseudo-code of function Update_Archive(Smi, Archive) 



3.5. Analysis of the proposed algorithm 

In the above description of MOEO-based FOPID controller design algorithm, the adjustable 

parameters including the maximum number of iterations (Imax), the maximum size of external archive 

Amax, and shape parameter q used in PLM play critical roles in controlling the performance of 

MOEO-FOPID. The comparison of adjustable parameters used in different optimization 

algorithms-based FOPID and PID controller design algorithms is shown in Table 2. It should be noted 

that one of most special case is MOEO-PID algorithm when λ=1 and µ=1 in the proposed algorithm. It 

is clear that the proposed MOEO-FOPID is simpler than NSGA-II-FOPID [30], NSGA-II-PID [30], 

and other reported single-objective evolutionary algorithms-based FOPID, such as GA-FOPID [14], 

PSO-FOPID[14],[24], and CAS-FOPID[14], due to its fewer adjustable parameters needing to be tuned. 

Furthermore, the superiority of the proposed MOEO-FOPID controller to these reported evolutionary 

algorithms-based FOPID and PID controllers in terms of accuracy and robustness will be demonstrated 

by a large number of experimental results in the next section. 

Table 2: The adjustable parameters used in different evolutionary algorithms-based FOPID and PID controller design algorithms 

Algorithm Number of parameters Adjustable parameters 

GA-FOPID [14] 5 
Population size NP, maximum number of iterations Imax, 

select parameter, crossover rate Pc, mutation rate Pm 

PSO-FOPID [14],[24] 6 
NP, Imax,  

inertia weight factor wmax and wmin, acceleration parameter c1, c2 

CAS-FOPID [14] 6 

Number of ants K, Imax, 

sufficient large positive parameter a, parameter b∈[0, 2/3], organization 

factor of the ith ant ri, initial value of the organization variable yi(0) 

NSGA-II-FOPID [30] 

NSGA-II-PID [30] 
9 

Number of chromosomes N, number of generation, archive size, 

tournament size, crossover rate, mutation rate, Pareto front population 

fraction, initial condition x0 and parameter a of chaotic map 

MOEO-FOPID 

MOEO-PID 
3 

maximum number of iterations Imax, maximum size of external archive 

Amax, and shape parameter q used in PLM 

4. Experimental results

To demonstrate the effectiveness of the proposed MOEO-FOPID algorithm, this section gives the 

experimental results on AVR system by comparing with NSGA-II-FOPID [30], reported competitive 

single-objective evolutionary algorithms-based FOPID including GA-FOPID [14], PSO-FOPID [14], 

and PSO-FOPID [14], NSGA-II-PID[30], and MOEO-PID. For a fair comparison, the parameters of 

AVR system are set as the same as in the research work [14]: KA = 10, τA = 0.1, KE = 1, τE = 0.4, KG = 1, 

τG = 1, KR = 1, and τR = 0.01. The lower and upper bounds of each FOPID control parameter are set the 

same as in [14]: 0≤Kp≤3, 0≤Ki≤1, 0≤Kd≤1, 0≤λ≤2, 0≤µ≤2, and the sample time Ts is set as 0.01 second. 

In practice, the approximate optimal value of the adjustable parameters including Imax, Amax and q in 

MOEO-FOPID for a specific problem is determined by trial and error. Generally, the larger the values 

of Imax and Amax are, the better the obtained Pareto solutions are, yet the higher the computational cost 

of the proposed algorithm is. In the experiments implemented in our work, Imax and Amax are easily 

determined by considering the balance between accuracy and computational efficiency. Additionally, 

the adjustable parameter q is used to control the PLM mutation operation used in MOEO-FOPID 



algorithm, and it often ranges from 50 to 100. In fact, we have designed and implemented the 

experiment to study the effect of the adjustable parameter q on the performance of the proposed 

algorithm. The experimental results have shown that the proposed algorithm is robust when q ranges 

from 50 to 100. In the following experiments, these adjustable parameters are set as Imax=5000, 

Amax=300, and q=90. It should be note that each evolutionary algorithm is executed ten independent 

runs and all the experiments have been implemented by using MATLAB software based on FOMCON 

toolbox [61] on a 3.10 GHz PC with processor i5-2400 and 2 GB RAM. 

4.1. MOEO-FOPID and its comparison with other evolutionary algorithms-based FOPID 

Fig.6 shows the interpolated 3D Pareto front of three objectives f1, f2, f3 for MOEO-FOPID 

controller, which is constructed for better visualization based on some non-dominated solutions 

obtained by the proposed MOEO-FOPID algorithm. It is clear that the diversity of these non-dominated 

solutions is very good. Some representative solutions on 3D Pareto front are presented in Table 3 and 

the corresponding terminal voltage step response of AVR are shown in Fig.7. Additionally, Table 4 

presents some best non-dominated solutions found by MOEO-FOPID algorithm and the corresponding 

control performance evaluated by overshoot Mp(%), steady-state error Ess, rise time tr, and settling time

ts with 5% error.  
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Fig.6. 3D Pareto front of three objectives f1, f2, f3 for MOEO-FOPID controller 

Table 3: Representative solutions on the 3D Pareto front of f1, f2, and f3 for MOEO-FOPID controller 

Solutions f1 f2 f3 KP KI KD λ µ 

Snd1 10.16194 0.000923 0.18 2.994396 0.816526 0.520659 1.177759 1.364708 

Snd2 9.945877 0.002313 0.18 2.986779 0.876460 0.549036 1.155639 1.345239 

Snd3 9.907913 0.011826 0.18 2.949676 0.920846 0.52602 1.139051 1.367165 

Snd4 9.908909 0.025028 0.17 2.992812 0.876460 0.542451 1.155639 1.360047 

Snd5 9.860025 0.043441 0.17 2.996575 0.895355 0.578998 1.148378 1.336722 

Table 5 shows comparative performance of MOEO-FOPID with NSGA-II-FOPID [30] and 

single-objective evolutionary algorithms-based FOPID controllers, such as GA-FOPID [14], 

PSO-FOPID [14] CAS-FOPID with β=1 and β=1.5 [14]. Moreover, terminal voltage step response of 

AVR system with MOEO-FOPID, NSGA-II-FOPID and these aforementioned single-objective 

evolutionary algorithms- based FOPID controllers are shown in Fig.8. It is evident that MOEO-FOPID 

provides better performance than NSGA-II-FOPID [30] in terms of all four indices. Although Mp 



obtained by MOEO-FOPID is worse than that by PSO-FOPID [14], CAS-FOPID with β=1 and β=1.5 

[14], other three performance indices obtained by MOEO-FOPID are all better. Compared with 

GA-FOPID [14], the proposed MOEO-FOPID provides three better performance indices including 

Mp(%), ts and Ess, and only little worse tr.  
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Fig.7. Terminal voltage step response of AVR with representative MOEO-FOPID solutions as reported in Table 3 

Table 4: Best non-dominated solutions for MOEO-PID controller and the corresponding control performance 

Snd f1 f2 f3 KP KI KD λ µ Mp(%) tr ts Ess 

1 9.913 6.577E-06 0.18 2.9737 0.9089 0.5383 1.1446 1.3462 3.203 0.13 0.18 6.577E-09 

2 10.515 1.618E-05 0.18 2.9620 0.7297 0.5404 1.2096 1.3521 2.758 0.13 0.18 1.618E-08 

3 9.825 2.392E-05 0.18 2.8611 0.9701 0.5409 1.1178 1.3444 2.875 0.13 0.18 2.392E-08 

4 9.611 2.998E-05 0.17 2.9689 0.9966 0.5695 1.1198 1.3399 3.878 0.13 0.17 2.998E-08 

5 9.814 3.097E-05 0.18 2.8501 0.9664 0.5531 1.1174 1.3354 3.479 0.13 0.18 3.097E-08 

6 9.882 4.843E-05 0.18 2.8645 0.9496 0.5383 1.1233 1.3425 2.961 0.13 0.18 4.843E-08 

7 10.222 4.913E-05 0.18 2.9988 0.7954 0.5588 1.1853 1.3436 3.601 0.13 0.18 4.913E-08 

8 10.058 4.994E-05 0.17 2.9948 0.8271 0.5352 1.1736 1.3634 2.210 0.13 0.17 4.994E-08 

9 9.967 5.396E-05 0.18 2.8316 0.9214 0.5589 1.1272 1.3267 3.939 0.13 0.18 5.396E-08 

10 9.930 6.234E-05 0.18 2.9670 0.9398 0.5543 1.1345 1.3240 4.640 0.13 0.18 6.234E-08 

Table 5: Comparative performance of MOEO-FOPID with NSGA-II-FOPID and reported competitive single-objective 

evolutionary algorithms-based FOPID controllers    

Algorithm KP KI KD λ µ Mp(%) tr(sec.) ts(sec.) Ess 

GA-FOPID [14] 1.6947 0.8849 0.3964 1.0248 1.1296 9.2600 0.1298 0.3395 0.0006 

PSO-FOPID [14] 1.6264 0.2956 0.3226 1.3183 1.1980 0.0953 0.1375 0.4563 0.0047 

CAS-FOPID (β=1) [14] 1.0537 0.4418 0.2510 1.0624 1.1122 0.1678 0.2223 0.3037 0.0014 

CAS-FOPID (β=1.5) [14] 0.9315 0.4776 0.2536 1.0275 1.0838 0.0642 0.2305 0.3187 0.0012 

NSGA-II-FOPID [30] 0.8399 1.3359 0.3512 0.9147 0.7107 38.7887 0.3200 1.2700 0.0014 



MOEO-FOPID 2.9737 0.9089 0.5383 1.1446 1.3462 3.2038 0.1300 0.1800 6.577E-09 
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Fig.8. Terminal voltage step response of AVR with MOEO-FOPID, NSGA-II-FOPID and reported competitive single-objective 

evolutionary algorithms-based FOPID controllers 

4.2. MOEO-PID and its comparison with MOEO-FOPID, NSGA-II-FOPID and NSGA-II-PID 

As one of the most special case of MOEO-FOPID, the interpolated 3D Pareto front of three 

objectives f1, f2, f3 for MOEO-PID controller shown in Fig. 9 is similarly constructed for better 

visualization based on some non-dominated solutions obtained by MOEO-PID algorithm. Clearly, the 

distribution of these non-dominated solutions for MOEO-PID is also very good. Some representative 

solutions on 3D Pareto front are presented in Table 6 and the corresponding terminal voltage step 

response of AVR are shown in Fig.10. 

To further demonstrate the effectiveness of the proposed MOEO-FOPID, we give comparative 

performance of MOEO-FOPID with MOEO-PID, NSGA-II-based FOPID and PID controllers [30] 

shown in Table 7 and the corresponding terminal voltage step response shown in Fig.11. Although 

MOEO-PID is worse than MOEO-FOPID, MOEO-PID is superior to NSGA-II-FOPID in terms of all 

four performance indices. Furthermore, MOEO-PID provides three better performance indices 

including Mp(%), ts, and Ess than NSGA-II-PID yet only little worse tr. In this sense, the proposed 

MOEO-FOPID and MOEO-PID are considered as superior to the reported competitive 

NSGA-II-FOPID [30] and NSGA-II-PID [30]. 
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Fig.9. 3D Pareto front of three objectives f1, f2, f3 for MOEO-PID controller 

Table 6: Representative solutions on the 3D Pareto front of f1, f2, and f3 for MOEO-PID controller 

Solutions f1 f2 f3 KP KI KD Mp(%) tr(sec.) ts(sec.) Ess 

Snd1 20.10781 0.009123 0.39 0.85035 0.74732 0.38744 4.50813 0.28 0.39 9.12E-06 

Snd2 19.95311 0.036733 0.38 0.86488 0.76205 0.39151 4.90683 0.28 0.38 3.67E-05 

Snd3 17.21317 0.006221 0.47 1.47617 0.98968 0.49150 17.08944 0.21 0.47 6.22E-06 

Snd4 17.96513 0.008242 0.45 1.14783 0.99160 0.47718 11.47526 0.23 0.45 8.24E-06 

Snd5 18.62633 0.039102 0.44 1.01335 0.88620 0.44585 8.58514 0.25 0.44 3.91E-05 
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Fig.10. Terminal voltage step response of AVR with representative MOEO-PID solutions as reported in Table 6 

Table 7: Comparative performance of MOEO-based with NSGA-II-based FOPID and PID controllers 

Algorithm KP KI KD λ µ Mp(%) tr(sec.) ts(sec.) Ess 

MOEO-FOPID 2.9737 0.9089 0.5383 1.1446 1.3462 3.2038 0.1300 0.1800 6.577E-09 

MOEO-PID 0.8503 0.7473 0.3874 1.0000 1.0000 4.5081 0.2800 0.3900 9.123E-06 

NSGA-II-FOPID [30] 0.8400 1.3359 0.3512 0.9147 0.7107 38.7887 0.3200 1.2700 1.390E-03 

NSGA-II-PID [30] 12.1027 6.0673 7.7007 1.0000 1.0000 63.0904 0.2100 0.5100 4.864E-05 
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Fig.11. Terminal voltage step response of AVR with MOEO-based with NSGA-II-based FOPID and PID controllers 



4.3. Robustness test 

To illustrate the robustness of MOEO-FOPID controller, the following experiments considering 

parameter uncertainties in AVR system due to the change in load condition are implemented.   

4.3. 1.Generator uncertainty 

When the parameter KG changes to 0.8 from actual value 1 and τG changes to 1.6 from actual value 

1 due to the change in load condition, the comparative performance of MOEO-FOPID controller with 

NSGA-II-based FOPID controller [30] and other single-objective evolutionary algorithms-based 

FOPID controllers [14] are shown in Table 8 and the corresponding terminal voltage step response are 

shown in Fig.12. Clearly, the proposed MOEO-FOPID controller is more robust and better than other 

evolutionary algorithms-based FOPID controllers [14] in terms of at least three performance indices 

under the uncertainty of the generator. Moreover, Fig.13 presents the terminal voltage step response for 

AVR system with MOEO-FOPID controller when KG varied from 1.0 to 0.9, 0.8, 0.7 and τG from 1.0 to 

1.3, 1.7, 1.9, 2.0, respectively. It is obvious that MOEO-FOPID controller is robust under the variation 

of parameters KG and τG in the range as given in Table 1. 

Table 8: Comparative performance of different evolutionary algorithms-based FOPID controller when KG changes to 0.8 from 1 

and τG changes to 1.6 from actual value 1 

Algorithm Mp(%) tr(sec.) ts(sec.) Ess 

GA-FOPID [14] 5.803333 0.38 0.82 0.0022 

PSO-FOPID [14] 1.062411 0.47 0.76 0.0030 

CAS-FOPID(β=1) [14] 2.878105 0.61 1.04 0.0026 

CAS-FOPID(β=1.5) [14] 2.895868 0.65 1.74 0.0021 

NSGA-II-FOPID [30] 32.84993 0.47 1.36 0.0016 

MOEO-FOPID 3.264274 0.32 0.72 0.0016 
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Fig.12. Comparison of terminal voltage step response when KG changes to 0.8 from 1 and τG changes to 1.6 from 1 
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Fig.13. The terminal voltage step response for AVR system with MOEO-FOPID controller under variation 

of KG (left) and τG (right) 

4.3.2. Exciter uncertainty 

Table 9: Comparative performance of different evolutionary algorithms-based FOPID controller when KE changes to 1.2 from 

1 and τE changes to 0.5 from actual value 0.4. 

Algorithm Mp(%) tr(sec.) ts(sec.) Ess 

GA-FOPID [14] 13.32531 0.21 0.49 7.12E-04 

PSO-FOPID [14] 6.749589 0.23 0.43 5.82E-04 

CAS-FOPID(β=1) [14] 7.089991 0.31 0.61 3.13E-04 

CAS-FOPID(β=1.5) [14] 6.248848 0.33 0.73 2.59E-04 

NSGA-II-FOPID [30] 45.38916 0.32 1.76 9.88E-04 

MOEO-FOPID 4.95083 0.13 0.19 1.57E-04 
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Fig.14. Terminal voltage step response when KE changes to 1.2 from 1 and τE changes to 0.5 from actual value 0.4 

Assuming the parameter KE changes to 1.2 from actual value 1 and τE changes to 0.5 from actual 

value 0.4 due to the change in load condition, Table 9 shows the comparative performance of 

MOEO-FOPID controller with NSGA-II-based FOPID controller [30] and other single-objective 

evolutionary algorithms-based FOPID controllers [14], and Fig.14 presents the corresponding terminal 

voltage step response. It is evident that the proposed MOEO-FOPID controller provides more robust 

and better performance than NSGA-II-FOPID [30] and competitive single-objective evolutionary 



algorithms-based FOPID controllers [14] in terms of all four indices under the uncertainty of the 

exciter. Additionally, when KG varied from 1.0 to 1.2, 1.5, 1.8, 2.0 and τG from 0.4 to 0.5, 0.7, 0.9, 1.0, 

the terminal voltage step response for AVR system with MOEO-FOPID controller is shown in Fig.15. 

Obviously, MOEO-FOPID controller is robust under the variation of parameters KE and τE in the range 

as given in Table 1. 
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Fig.15. Terminal voltage step response for AVR system with MOEO-FOPID controller under variation 

of KE (left) and τE (right) 

4.3.3. Amplifier uncertainty 

Here, the uncertainty of amplifier model parameters is considered, for example, KA changes to 20 

from actual value 10 and τA changes to 0.07 from actual value 0.1. The comparative performance of the 

proposed MOEO-FOPID with NSGA-II-FOPID and competitive single-objective evolutionary 

algorithms-based FOPID controllers and the corresponding terminal voltage step response of AVR 

system are presented in Table 10 and Fig. 16, respectively. It is clear that the proposed MOEO-FOPID 

is also more robust and better than these reported NSGA-II-FOPID, GA-FOPID [14], PSO-FOPID [14], 

CAS-FOPID with β=1 and β=1.5 [14] under the uncertainty of amplifier model parameters. 

Furthermore, Fig.17 presents the terminal voltage step response for AVR system with MOEO-FOPID 

controller when KA varied from 10 to 30, 50, 100, 200, 400 and τA from 1.0 to 1.3, 1.7, 1.9, 2.0, 

respectively. Clearly, as the value of parameter KA increases, the overshoot Mp increases but rising time 

tr and settling time ts becomes faster and the steady-state error Ess is smaller. As the value of parameter 

τA increases, Mp becomes smaller while tr, ts, and Ess are larger. However, from the perspective of 

engineering design and system operation, the performance of MOEO-FOPID is accepted by engineers 

under the variation of parameters KA and τA in the range as given in Table 1. In this sense, the developed 

MOEO-FOPID controller is viewed as robust for the uncertainty of amplifier model parameters within 

the range defined as in Table 1.  

Table 10: Comparative performance of different evolutionary algorithms-based FOPID controller when KA changes to 20 

from 10 and τA changes to 0.7 from actual value 1 

Algorithm Mp(%) tr(sec.) ts(sec.) Ess 

GA-FOPID [14] 17.27371 0.12 0.26 4.05E-04 

PSO-FOPID [14] 10.46691 0.12 0.24 4.63E-04 

CAS-FOPID(β=1) [14] 9.079521 0.17 0.32 2.35E-04 

CAS-FOPID(β=1.5) [14] 8.941498 0.17 0.36 1.89E-04 

NSGA-II-FOPID [30] 46.71605 0.2 1.12 6.92E-04 

MOEO-FOPID 14.07733 0.07 0.23 2.98E-05 
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5. Conclusion

From the perspective of multi-objective optimization, a novel FOPID controller design method 

called MOEO-FOPID for AVR system is proposed based on multi-objective extremal optimization 

(MOEO) in this work. Firstly, the FOPID design problem for AVR system is formulated as a 

multi-objective optimization problem with three objective functions including integral of absolute error 

(IAE), absolute steady-state error, and settling time, and then this problem is solved by developing an 

improved MOEO algorithm on the basis of individual-based iterated optimization mechanism and 

polynomial mutation (PLM). One of the most attractive advantages is the relative simplicity of 

MOEO-FOPID comparing with chaotic NSGA-II-FOPID [30], NSGA-II-PID [30], and 

single-objective evolutionary algorithms-based FOPID algorithms such as GA-FOPID[14], 

PSO-FOPID [14],[24], and CAS-FOPID [14] due to its fewer adjustable parameters and single 

individual-based iterated optimization mechanism with only mutation operation. Furthermore, 

extensive experimental results have shown that the proposed MOEO-FOPID algorithm provides better 

or at least competitive performance than these aforementioned evolutionary algorithms in terms of 

accuracy and robustness. Consequently, the proposed MOEO-FOPID is considered as another novel 

promising multi-objective evolutionary algorithm to design FOPID controllers for AVR and other 



industrial systems. However, the performances of MOEO-FOPID may be further improved by tuning 

the adjustable parameters based on an adaptive mechanism and using other possible appropriate 

definition of multi-objective functions. On the other hand, the extension of MOEO-FOPID to more 

complex practical control systems will be another significant subject of future investigation.  
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